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Abstract—-The axisymmetric large defiection behaviour of imperfect, tapered, circular plates is analysed by
the method of Dynamic Relaxation. The amalysis is restricted to plates with linear thickness tapers and
affine imperfections, the latter being sympathetic to the applied uniform lateral pressure. In general, the
resuluoftbelnlymshowtluttbedelecﬂomandsmuesdonotvarymﬂymthvmmnsmtbeuper
ratio, but that they reduce significantly as the magnitude of the imperfection increases.
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INTRODUCTION

Circular plates are commonly utilised as primary load carrying clements in structures. Usually,
these plates are of constant thickness, but sometimes it is convenient to use plates, which taper
in thickness. The design of these plates is generally based on small deflection theory. Whilst this
approach is adequate in most circumstances, it is nevertheless conservative. A more rational
approach would be to utilise elastic large deflection theory and to account, as well, for initial
imperfections, which may be present fortuitously or by design.

Unfortunately, the initial imperfections, which may be present, may take a variety of forms
and this serves to complicate any study of their influence on the plate behaviour. However, if
the restriction is imposed that the initial imperfection should always remain affine to the
additional plate deflection, then a parameter study to assess the influence of the initial
imperfection on the plate response in the large deflection regime may be more readily
accomplished. In the present context, the type of affinity selected for the initial imperfection is
linear (see eqn 3 of the next section). This choice implies that.it is of the same form as the
additional deflection resulting from the applied loading. Thus as only uniform lateral pressures
are considered herein, then the implied initial imperfection is a single half-wave. The linear
relationship between the initial and additional deflections implies the further consequence that
the initial imperfection is load dependent, a fact which is commonly assumed to be atypical of
real imperfections. Nevertheless, this feature is thought not to be too serious{1], and, moreover,
the results of the present computations may be expected to reveal the same general trends as
those based on real imperfections.
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Nylander[1] has shown that provided certain boundary condition similarity conditions are
satisfied, then the perfect or flat plate large deflection results may be used to construct the
corresponding results for plates with affine imperfections. Amongst the many results presented
by Nylander are those for a uniformly loaded, constant thickness, simply supported, circular
plate with affine imperfections. However, no results were presented for clamped circular plates
and, moreover, Nylander has not shown that the same form of construction can be applied to
plates, which taper in thickness. Since the usefulness of this technique relies heavily on the
availability of the corresponding flat plate solution, the author has not seen fit to examine
whether this technique may be extended to tapered plates, even though some perfect tapered
plate results for the large deflection regime are available[2, 3]. Instead, the author believes that
a more reliable approach is to solve the large deflection equations of tapered plates with affine
imperfections directly by numerical integration. The particular integration procedure selected is
known as Dynamic Relaxation (DR){4].

PLATE GEOMETRY
The current study seeks to examine the influence of two particular geometric parameters on
the plate response in the presence of a uniform lateral load. These two parameters are: the
thickness taper ratio, a, and the imperfection or deflection affinity parameter, k.
In practice, only linear thickness tapers are likely to arise and hence the plate thickness at
an arbitrary radius, 7, may be expressed as,

h, = ho(1 - 2ara™) 4))

where r=0-4a. Thus for the present purposes, it is considered sufficient to restrict the
computations to three distinct a values, namely: —3, 0 and +3.
The total plate deflection may be expressed as,

W = Wo+ Wy (2)

where w, and w, are the initial and additional deflections respectively. If the initial deflection is
to remain affine to the additional deflection, then the following relationship is implied,

Wo = le (3)

and hence by varying the value of k a whole range of initial imperfection magnitudes may be
examined. The particular k values chosen for computational purposes are: 0, 3, 1 and 2.

ANALYSIS

(i) Governing equations

The DR method is suited to the numerical integration of iow order differential equations.
Because of this, it is convenient to retain the separate identities of the compatibility, constitu-
tive and equilibrium equations throughout the analysis. These equations assume the following
forms for axisymmetric deformations:

(a) Compatibility equations. Utilising eqns (2) and (3) the compatibility equations may be
expressed as,

e = u +3(1+2k)wi?
-1

e=r"'u
kr='-wi. (4)
k= -rlw;.

(b) Constitutive equations.
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N,= A, + Ase,
Ni=Ase, + A,
M, = Dk, + D\k, %)
M, = Dk, + Dik,.

Equations (5) apply to polar orthotropic materials, but all the plates considered herein are
assumed to be fabricated from an isotropic material (e.g. steel, for which » =0.3) and hence,
A, =A,=Eh(1-9"', A=A,
and 6)
D,=D,=Er’(1-v¥"'12, D,=vD,

(c) Equilibrium equations. Only the transverse equilibrium equation is affected by the affine
imperfection, so that these equations are
N;+r’'(N,-N)=0
My +r'QM;— M)+ (1 + k){N(wi" + r'w))+ N;wi}+ g =0. M
(ii) Boundary conditions
The study is restricted to circular plates with either a simply supported or a clamped
boundary and in each case full in-plane restraint is assumed. Thus the appropriate boundary

condition equations are:
(1) Simply supported (r =1a).

w;=0
M, = Dk, + Dk, =0 (8a)
u=0
(2) Clamped (r=1a).
w; =0
wi=0 (8b)
u=0.

(3) DR procedure.

As the DR method is fully documented elsewhere [4], a description of its
application to eqns (4)-(8) is omitted. Nevertheless, it is worth pointing out that the present
application does make use of rationally determined fictitious densities[S] together with a unit
time increment. Thus only the two damping factors require to be determined by arbitrary means
and their evaluation and adjustment to achieve rapid solution convergence is a relatively simple
matter. This approach has been found to be superior to the more usual approach, in which both
the fictitious densities and the damping factors are determined by trial and error.

RESULTS

A preliminary set of computations was undertaken in order to: (a) verify the computer
program, and (b) to determine a suitable mesh size for the main computations. Table 1, which
compares the DR results with those of Nylander for a uniformly loaded, constant thickness,
simply supported, circular plate, clearly demonstrates objective (a). Based on these and other
results, it was concluded that objective (b) would be met by using a 10.5 interval interlacing
mesh for the main computations of the parameter study.

In order that the computer results may enjoy their widest possible application, they are
presented in Figs. 1-5 in nondimensional graphical form, which allows interpolation with
reasonable accuracy.
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Table 1. Comparison between Nylander's and the DR program results at the centre of a uniformly loaded, constant
thickness, simply supported, circuiar plate with an affine imperfection (» = 0.25)

2ressurs Affimity Kylander's Runlts' DR Program Results

3 X *4 E:,t ¥4 7t
20 0.36 1.40 2.90 1.3684 2.9331
20 1.00 1.00 2,715 1.0020 2,7648
20 4.44 0.45 2.25 0.4828 2,1456

* The Nylander Results have been evaluated by scaling graphs
and are” therefore only given to two decimal places,.
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Fig. 1(d).

Fig. 1. Additional central deflection vs lateral pressure for a simply supported circular plate (v =0.3);
@k=0,0) k=05, ()k=1,(d) k=2

Figure 1 presents the additional deflection at the centre of a simply supported plate as a
function of the lateral pressure for three values of the taper ratio and four values of the affinity
parameter. It is evident that, in all cases, the additional deflection increases marginally with
increasing taper ratio and decreases substantially as the value of the affinity paraméter
increases. Corresponding results for the clamped plate are not presented, since they differ only
marginally from the simply supported results, i.e. from about 5% at low values of the lateral
pressure to rather less than 2% at higher values. Therefore, except where great accuracy is
required, the results of Fig. 1 may be used for both sets of boundary conditions.

The central bending stress vs lateral pressure is plotted in Fig. 2 for a simply supported
plate. Here too, the dependence of the bending stress on the value of the taper ratio and the
affinity parameter is similar to that of Fig. 1, i.c. marginal in the case of the former and rather
more substantial in the case of the latter:

Figure 3 compares the simply supported and clamped plate centre bending stress for
a=2=0.5and k=1 and 2. It is evident that the stresses diverge as the taper ratio decreases, but
that this effect reduces as k increases in value.

SS VOL. 14 NO. 71—C
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Fig. 2. Central bending stress vs lateral pressure for a simply supported circular plate (v = 0.3); (a) k=0,
® k=05, () k=1,(d) k=2

In Fig. 4 the simply supported plate centre membrane stress vs lateral pressure curves are
plotted for the upper and lower taper ratio limits and for each of the four k values considered
herein. They demonstrate that this stress is almost independent of the plate taper ratio and,
moreover, that it reduces slightly as the value of the affinity parameter, k, increases.

Finally, Fig. 5 compares the plate centre membrane stress for both simply supported and
clamped boundary conditions. Although comparative results are shown for the upper limit of
the taper ratio only, 2 similar behaviour is observed for other a and k values. Thus, these

curves suggest that the results presented in Fig. 4 may be used for plates with either boundary
condition without an undue loss in accuracy.
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Fig. 3. Central bending stress vs lateral pressure for simply supported and clamped circular plates (v = 0.3).
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Fig. 4. Central membrane stress vs lateral pressure for a simply supported circular plate (v = 0.3); (@) k=0,
Mk=05 (@ k=1({dk=2
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Fig. 5. Central membrane stress vs lateral pressure for simply supported and clamped circular plates
{(r=0.3).
CONCLUSIONS

The main conclusions to be drawn from the computed results are summarised as follows:

(1) The central deflection increases moderately with increasing taper ratio and reduces
substantially as the affinity parameter increases.

(2) The central bending stress decreases moderately with increasing taper ratio and reduces
substantially as the affinity parameter increases.

(3) The central membrane stress is relatively insensitive to taper ratio and decreases only
marginally as the affinity parameter increases.

(4) The central deflection and membrane stress are relatively insensitive to the boundary
support conditions.
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